经典查找算法主要有顺序查找、二分查找、插值查找、斐波那契查找、二叉查找树等,这里用Java语言实现这些算法。
顺序查找
说明
顺序查找适合于存储结构为顺序存储或链接存储的线性表。
基本思想
顺序查找也称为线形查找,属于无序查找算法。从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。
实现源码
public int sequenceSearch(int[] arr, int key){
for(int i=0;i<arr.length;i++){
if(arr[i]==key){
return i;
}
}
return -1;
}
二分查找
说明
元素必须是有序的,如果是无序的则要先进行排序操作。
基本思想
也称为是折半查找,属于有序查找算法。用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表,这样递归进行,直到查找到或查找结束发现表中没有这样的结点。
实现源码
//循环
public int binarySearch(int[] arr, int key){
int low=0, high=arr.length-1;
while(low<=high){
int mid=(low+high)/2;
if(arr[mid]==key){
return mid;
}
if(arr[mid]<key){
low=mid+1;
}
if(arr[mid]>key){
high=mid-1;
}
}
return -1;
}
//递归
public int binarySearch1(int[] arr, int key, int low, int high){
if(low>high){
return -1;
}
int mid=(low+high)/2;
if(arr[mid]==key){
return mid;
}
if(arr[mid]<key){
return binarySearch1(arr, key, mid+1, high);
} else {
return binarySearch1(arr, key, low, mid-1);
}
}
插值查找
说明
在英文字典里面查“apple”,你下意识翻开字典是翻前面的书页还是后面的书页呢?如果再让你查“zoo”,你又怎么查?很显然,这里你绝对不会是从中间开始查起,而是有一定目的的往前或往后翻。同样的,比如要在取值范围1 ~ 10000 之间 100 个元素从小到大均匀分布的数组中查找5, 我们自然会考虑从数组下标较小的开始查找。 二分查找这种查找方式,不是自适应的。二分查找中查找点计算如下:mid=(low+high)/2, 即mid=low+1/2*(high-low)。我们可以将查找的点改进为如下:mid=low+(key-a[low])/(a[high]-a[low])*(high-low),也就是将上述的比例参数1/2改进为自适应的,根据关键字在整个有序表中所处的位置,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。 对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。
基本思想
基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。
实现源码
//循环
public int insertSearch(int[] arr, int key){
int low=0, high=arr.length-1;
while(low<=high){
int mid=low+(key-arr[low])/(arr[high]-arr[low])*(high-low);
if(arr[mid]==key){
return mid;
}
if(arr[mid]<key){
low=mid+1;
}
if(arr[mid]>key){
high=mid-1;
}
}
return -1;
}
//递归
public int insertSearch1(int[] arr, int key, int low, int high){
if(low>high){
return -1;
}
int mid=low+(key-arr[low])/(arr[high]-arr[low])*(high-low);
if(arr[mid]==key){
return mid;
}
if(arr[mid]<key){
return insertSearch1(arr, key, mid+1, high);
}else {
return insertSearch1(arr, key, low, mid-1);
}
}
斐波那契查找
说明
基本思想
斐波那契查找是根据斐波那契序列的特点对表进行分割。假设表中记录的个数比某个斐波那契数小1,即n=Fn−1,然后将给定值和表中第Fn−1个记录的关键字进行比较。若相等,则查找成功;若给定关键字<表中第Fn−1个记录的关键字,则继续在表中从第一个记录到第Fn−1−1个记录之间查找;若给定关键字>表中第Fn−1个记录的关键字,则继续在自Fn−1+1至Fn−1的子表中查找。
实现源码
//斐波那契数列长度,按使用场景变化
public static final int MAX_SIZE=30;
public int fibonacciSearch(int[] arr, int key){
int len=arr.length;
/*1.构造斐波那契数组
//构造斐波那契数组
int[] fib=fibnacci(MAX_SIZE);
//len位于斐波那契数列的位置
int k=0;
while(len>(fib[k]-1)){
k++;
}
//将数组arr扩展到fib[k]-1的长度
int[] temp=new int[fib[k]-1];
for(int i=0;i<len;i++){
temp[i]=arr[i];
}
//保持temp数组仍然有序
for(int i=len;i<fib[k]-1;i++){
temp[i]=arr[len-1];
}
*/
//2.获取所需斐波那契数
//确定需要的斐波那契数
int k=0;
while(len>getFibnacci(k)-1){
k++;
}
//将数组arr扩展到fib[k]-1的长度
int[] temp=new int[getFibnacci(k)-1];
for(int i=0;i<len;i++){
temp[i]=arr[i];
}
//保持temp数组仍然有序
for(int i=len;i<getFibnacci(k)-1;i++){
temp[i]=arr[len-1];
}
int low=0, high=temp.length-1;
while(low<=high){
int mid=low+getFibnacci(k-1);
if(temp[mid]==key){
//判断是否是扩展的数值
if(mid<len){
return mid;
}else {
return len-1;
}
}else
if(temp[mid]<key){
low=mid+1;
k=k-1;
}else {
high=mid-1;
k=k-2;
}
}
return -1;
}
//得到第n个斐波那契数
public int getFibnacci(int n){
int result=0;
int fib0=0, fib1=1;
if(n==0){
return fib0;
}
if(n==1){
return fib1;
}
for(int i=2;i<=n;i++){
result=fib0+fib1;
fib0=fib1;
fib1=result;
}
return result;
}
//构造斐波那契数列
public int[] fibnacci(int n){
int[] result=new int[n];
result[0]=0;
result[1]=1;
for(int i=2;i<n;i++){
result[i]=result[i-1]+result[i-2];
}
return result;
}
二叉查找树
说明
二叉查找树(又称二叉排序树、二叉搜索树)或者是空树,或者是具有下列性质的一颗树:
若他的左子树不为空,则左子树上所有结点的值均小于其根节点的值;
若他的右子树不为空,则右子树上所有结点的值均大于其根节点的值;
二叉查找树性质:对二叉查找树进行中序遍历,即可得到有序的数列。
基本思想
二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适合的范围。 这个算法的查找效率很高,但是如果使用这种查找方法要首先创建树。
实现源码
public class BSTSearch {
// 递归
public boolean bstSearch(BSTreeNode root, int key) {
if (root.data == key) {
return true;
} else if (root.data < key) {
return bstSearch(root.right, key);
} else {
return bstSearch(root.left, key);
}
}
// 循环
public boolean bstSearch1(BSTreeNode root, int key) {
BSTreeNode node = root;
while (node != null) {
if (node.data == key) {
return true;
}
if (node.data < key) {
node = node.right;
}
if (node.data > key) {
node = node.left;
}
}
return false;
}
}
class BSTreeNode {
public int data;
public BSTreeNode left;
public BSTreeNode right;
public BSTreeNode(int data) {
this.data = data;
}
public BSTreeNode(int data, BSTreeNode left, BSTreeNode right) {
this.data = data;
this.left = left;
this.right = right;
}
}
总结
复杂度比较:
[Data Structure & Algorithm] 七大查找算法 常见查找算法(Java实现)