经典查找算法总结(Java实现)

经典查找算法主要有顺序查找、二分查找、插值查找、斐波那契查找、二叉查找树等,这里用Java语言实现这些算法。

顺序查找

说明

顺序查找适合于存储结构为顺序存储或链接存储的线性表。

基本思想

顺序查找也称为线形查找,属于无序查找算法。从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。

实现源码

public int sequenceSearch(int[] arr, int key){
	for(int i=0;i<arr.length;i++){
		if(arr[i]==key){
			return i;
		}
	}
	return -1;
}

二分查找

说明

元素必须是有序的,如果是无序的则要先进行排序操作。

基本思想

也称为是折半查找,属于有序查找算法。用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表,这样递归进行,直到查找到或查找结束发现表中没有这样的结点。

实现源码

插值查找

说明

在英文字典里面查“apple”,你下意识翻开字典是翻前面的书页还是后面的书页呢?如果再让你查“zoo”,你又怎么查?很显然,这里你绝对不会是从中间开始查起,而是有一定目的的往前或往后翻。同样的,比如要在取值范围1 ~ 10000 之间 100 个元素从小到大均匀分布的数组中查找5, 我们自然会考虑从数组下标较小的开始查找。 二分查找这种查找方式,不是自适应的。二分查找中查找点计算如下:mid=(low+high)/2, 即mid=low+1/2*(high-low)。我们可以将查找的点改进为如下:mid=low+(key-a[low])/(a[high]-a[low])*(high-low),也就是将上述的比例参数1/2改进为自适应的,根据关键字在整个有序表中所处的位置,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。 对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。

基本思想

基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。

实现源码

斐波那契查找

说明

经典查找算法总结(Java实现)1

基本思想

斐波那契查找是根据斐波那契序列的特点对表进行分割。假设表中记录的个数比某个斐波那契数小1,即n=Fn−1,然后将给定值和表中第Fn−1个记录的关键字进行比较。若相等,则查找成功;若给定关键字<表中第Fn−1个记录的关键字,则继续在表中从第一个记录到第Fn−1−1个记录之间查找;若给定关键字>表中第Fn−1个记录的关键字,则继续在自Fn−1+1至Fn−1的子表中查找。

实现源码

二叉查找树

说明

二叉查找树(又称二叉排序树、二叉搜索树)或者是空树,或者是具有下列性质的一颗树:

  • 若他的左子树不为空,则左子树上所有结点的值均小于其根节点的值;

  • 若他的右子树不为空,则右子树上所有结点的值均大于其根节点的值;

  • 他的左右子树也均是二叉排序树。

二叉查找树性质:对二叉查找树进行中序遍历,即可得到有序的数列。

基本思想

二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适合的范围。 这个算法的查找效率很高,但是如果使用这种查找方法要首先创建树。

实现源码

总结

复杂度比较:

类别
时间复杂度

顺序查找

O(n)

二分查找

O($\log_2{n}$)

插值查找

O($\log_2(\log_2{n})$)

斐波那契查找

O($\log_2{n}$)

二叉查找树

O($\log_2{n}$) ~ O(n)


[Data Structure & Algorithm] 七大查找算法 常见查找算法(Java实现)

Last updated