notebooks
  • notebooks
  • _planning
    • 2022 OKR
    • basketball
    • swimming
  • communication
    • Dubbo
    • Kafka
    • Messaging
    • RPC
    • Thrift
  • computation
    • map-reduce
  • cs-basic-knowledge
    • computer-architecture
    • data-structure-and-algorithms
    • networks
    • os
  • devops
    • Docker
    • Linux
    • Prometheus
    • operations
    • security
    • trouble-shooting
  • distributed-knowledge
    • Zookeeper_CMD
    • distributed-system
  • game-engine
    • Unity
  • others
    • appium使用
  • protocols
    • http(s)协议
    • 官方链接
    • sip
  • storage
    • Elasticsearch
    • GuavaCache
    • MySQL
    • MySQL_CMD
    • NoSQL
    • Redis
    • Redis_CMD
  • system-design
    • system-design
  • tools
    • Git
    • IDEA
    • Mac
    • VScode
    • Vim
  • _working
    • doc-template
      • backend-design-review
      • correction-of-error
      • service-review
    • process
      • domain-backup
      • oncall
  • blogs
    • history
      • 8088/8086微处理器
      • 8088/8086指令系统
      • CSS-DOM
      • CSS定位
      • CSS工作原理
      • CSS控制背景
      • CSS浮动布局
      • CSS盒模型
      • Chrome开发者工具使用方法
      • DOM
      • Django Model模型层学习
      • Django-REST-framework Serializers学习
      • Django-REST-framework Views和ViewSets学习
      • Django View视图层学习
      • Gvim下Emmet安装及使用教程
      • HTTP协议简介
      • HashMap原理初探
      • JavaScript简史
      • JavaScript语法
      • Java内存模型和GC机制
      • Java基础——Lambda学习
      • Java基础——方法引用
      • Java基础——枚举类型
      • Java类加载机制
      • KMP算法
      • Kafka学习
      • Linux下用命令行编译Java程序
      • MathJax简介和基本用法
      • Python实现常见数据结构
      • Python装饰器总结
      • TCP协议的三次握手和四次挥手
      • Thrift学习
      • asyncio学习
      • markdown的常用语法
      • 修改hosts文件实现翻墙
      • 充实文档的内容
      • 关系数据库
      • 关系数据库标准语言SQL(一)
      • 关系数据库标准语言SQL(二)
      • 关系数据理论
      • 关系查询处理和查询优化
      • 内联元素和块级元素
      • 剑指offer算法题练习
      • 动态创建标记
      • 图形化用户界面
      • 在Eclipse中使用Maven构建Java Web项目
      • 增加微博秀遇到的一些问题
      • 处理机调度
      • 如何用github和hexo搭建个人博客
      • 存储管理
      • 存储系统的层次结构
      • 学习模仿lionhit网站首页的过程总结
      • 实用的GitHub小技巧
      • 并发控制
      • 循环与分支程序设计
      • 指令系统的设计
      • 指令级并行及其开发——硬件方法
      • 搭建自己的VPN服务器
      • 操作系统用户界面
      • 数据库安全性
      • 数据库完整性
      • 数据库恢复技术
      • 数据库绪论
      • 数据库编程
      • 数据库设计
      • 数据抽象
      • 文件系统
      • 文法和语言
      • 最佳实践
      • 案例研究:JavaScript图片库
      • 案例研究:图片库改进版
      • 汇编语言程序格式
      • 汇编语言程序设计基础知识
      • 流水线技术
      • 深度优先搜索和广度优先搜索
      • 牛客网——网易2017秋招编程题集合
      • 用JavaScript实现动画效果
      • 第一篇博客
      • 经典排序算法总结(Java实现)
      • 经典查找算法总结(Java实现)
      • 综合示例
      • 编译原理引论
      • 背包、队列和栈
      • 虚拟机安装Linux系统及常用软件
      • 计算机操作系统绪论
      • 计算机系统结构的基础知识
      • 设备管理
      • 设计模式之代理模式
      • 设计模式之单例模式
      • 设计模式之工厂模式
      • 设计模式之策略模式
      • 设计模式之观察者模式
      • 词法分析
      • 进程管理
      • 闭包
      • 阻止Google自动跳转到香港服务器的方法
      • 项目部署过程
  • programming-language
    • C#
      • C#
    • C&C++
      • C
    • C&C++
      • C++
    • Java
      • GoogleGuice
    • Java
      • JVM
    • Java
      • Java
    • Java
      • Maven
    • Java
      • Mybatis
    • Java
      • Spring知识
    • Java
      • SpringBoot
    • Java
      • Tomcat
    • Python
      • Python
    • Shell
      • Shell
  • wheels
    • dcc
      • 产品调研
      • 方案设计
    • red-envelope
      • 方案设计
    • short-url
      • 短链接服务
    • sso
      • 方案设计
Powered by GitBook
On this page
  • 介绍
  • 实现
  • 懒汉式,线程不安全
  • 懒汉式,线程安全
  • 饿汉式
  • 双重检验锁
  • 静态内部类
  • 枚举
  1. blogs
  2. history

设计模式之单例模式

单例模式,也叫单子模式,是一种常用的软件设计模式。在应用这个模式时,单例对象的类必须保证只有一个实例存在。许多时候整个系统只需要拥有一个的全局对象,这样有利于我们协调系统整体的行为。比如在某个服务器程序中,该服务器的配置信息存放在一个文件中,这些配置数据由一个单例对象统一读取,然后服务进程中的其他对象再通过这个单例对象获取这些配置信息。这种方式简化了在复杂环境下的配置管理。

实现单例模式的思路是:一个类能返回对象一个引用(永远是同一个)和一个获得该实例的方法(必须是静态方法,通常使用getInstance这个名称);当我们调用这个方法时,如果类持有的引用不为空就返回这个引用,如果类保持的引用为空就创建该类的实例并将实例的引用赋予该类保持的引用;同时我们还将该类的构造函数定义为私有方法,这样其他处的代码就无法通过调用该类的构造函数来实例化该类的对象,只有通过该类提供的静态方法来得到该类的唯一实例。

介绍

意图:保证一个类仅有一个实例,并提供一个访问它的全局访问点。 主要解决:一个全局使用的类频繁地创建与销毁。 何时使用:当您想控制实例数目,节省系统资源的时候。 如何解决:判断系统是否已经有这个单例,如果有则返回,如果没有则创建。 关键代码:构造函数是私有的。 应用实例: 1、一个党只能有一个主席。 2、Windows 是多进程多线程的,在操作一个文件的时候,就不可避免地出现多个进程或线程同时操作一个文件的现象,所以所有文件的处理必须通过唯一的实例来进行。 3、一些设备管理器常常设计为单例模式,比如一个电脑有两台打印机,在输出的时候就要处理不能两台打印机打印同一个文件。 优点: 1、在内存里只有一个实例,减少了内存的开销,尤其是频繁的创建和销毁实例(比如管理学院首页页面缓存)。 2、避免对资源的多重占用(比如写文件操作)。 缺点:没有接口,不能继承,与单一职责原则冲突,一个类应该只关心内部逻辑,而不关心外面怎么样来实例化。 使用场景: 1、要求生产唯一序列号。 2、WEB 中的计数器,不用每次刷新都在数据库里加一次,用单例先缓存起来。 3、创建的一个对象需要消耗的资源过多,比如 I/O 与数据库的连接等。 注意事项:getInstance() 方法中需要使用同步锁 synchronized(Singleton.class) 防止多线程同时进入造成 instance 被多次实例化。

实现

懒汉式,线程不安全

public class Singleton {
    private static Singleton instance;
    private Singleton (){}
  
    public static Singleton getInstance() {
    if (instance == null) {
        instance = new Singleton();  
    }
    return instance;
    }
}

缺点:不支持多线程。如果两个线程同时运行到判断instance是否为null的if语句,并且if的确没有创建时,那么两个线程都会创建一个实例,此时就不满足单例模式只有一个实例的要求了。

懒汉式,线程安全

public class Singleton {  
    private static Singleton instance;  
    private Singleton (){}  
    public static synchronized Singleton getInstance() {  
    if (instance == null) {  
        instance = new Singleton();  
    }  
    return instance;  
    }  
} 

优点:第一次调用才初始化,避免内存浪费 缺点:每次通过getInstance得到实例时,都会试图加上一个同步锁,而加锁是一个非常耗时的操作,在没有必要情况下尽量避免。

饿汉式

public class Singleton {  
    private static Singleton instance = new Singleton();  
    private Singleton (){}  
    public static Singleton getInstance() {  
    return instance;  
    }  
}  

优点:没有加锁,执行效率会提高 缺点:类加载的时候就会直接new 一个静态对象出来,当系统中这样的类较多时,会使得启动速度变慢,也占用内存,因为无法按需创建实例。

双重检验锁

双重检验锁模式(double checked locking pattern),是一种使用同步块加锁的方法。程序员称其为双重检查锁,因为会有两次检查 instance == null,一次是在同步块外,一次是在同步块内。为什么在同步块内还要再检验一次?因为可能会有多个线程一起进入同步块外的 if,如果在同步块内不进行二次检验的话就会生成多个实例了。

public static Singleton getSingleton() {
    if (instance == null) {                         //Single Checked
        synchronized (Singleton.class) {
            if (instance == null) {                 //Double Checked
                instance = new Singleton();
            }
        }
    }
    return instance ;
}

存在一个问题:主要在于instance = new Singleton()这句,这并非是一个原子操作,事实上在 JVM 中这句话大概做了下面 3 件事情。

  1. 给 instance 分配内存

  2. 调用 Singleton 的构造函数来初始化成员变量

  3. 将instance对象指向分配的内存空间(执行完这步 instance 就为非 null 了)

但是在 JVM 的即时编译器中存在指令重排序的优化。也就是说上面的第二步和第三步的顺序是不能保证的,最终的执行顺序可能是 1-2-3 也可能是 1-3-2。如果是后者,则在 3 执行完毕、2 未执行之前,被线程二抢占了,这时 instance 已经是非 null 了(但却没有初始化),所以线程二会直接返回 instance,然后使用,然后顺理成章地报错。 修正:讲instance变量声明成volatile

public class Singleton {
    private volatile static Singleton instance; //声明成 volatile
    private Singleton (){}
    public static Singleton getSingleton() {
        if (instance == null) {                         
            synchronized (Singleton.class) {
                if (instance == null) {       
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
   
}

静态内部类

public class Singleton {  
    private static class SingletonHolder {  
    private static final Singleton INSTANCE = new Singleton();  
    } 
    private Singleton (){}  
    public static final Singleton getInstance() {  
    return SingletonHolder.INSTANCE;  
    }  
} 

这种方式同样利用了 classloder 机制来保证初始化 instance 时只有一个线程,它跟第饿汉式不同的是:饿汗式只要 Singleton 类被装载了,那么 instance 就会被实例化(没有达到 lazy loading 效果),而这种方式是 Singleton 类被装载了,instance 不一定被初始化。因为 SingletonHolder 类没有被主动使用,只有显示通过调用 getInstance 方法时,才会显示装载 SingletonHolder 类,从而实例化 instance。想象一下,如果实例化 instance 很消耗资源,所以想让它延迟加载,另外一方面,又不希望在 Singleton 类加载时就实例化,因为不能确保 Singleton 类还可能在其他的地方被主动使用从而被加载,那么这个时候实例化 instance 显然是不合适的。这个时候,这种方式相比饿汗式就显得很合理。

枚举

public enum Singleton {  
    INSTANCE;  
    public void whateverMethod() {  
    }  
}  

这种方式是 Effective Java 作者 Josh Bloch 提倡的方式,它不仅能避免多线程同步问题,而且还自动支持序列化机制,防止反序列化重新创建新的对象,绝对防止多次实例化。不过,由于 JDK1.5 之后才加入 enum 特性,用这种方式写不免让人感觉生疏,在实际工作中,也很少用。 不能通过 reflection attack 来调用私有构造方法。


Previous设计模式之代理模式Next设计模式之工厂模式

Last updated 3 years ago

单例模式|菜鸟教程
如何正确地写出单例模式