notebooks
  • notebooks
  • _planning
    • 2022 OKR
    • basketball
    • swimming
  • communication
    • Dubbo
    • Kafka
    • Messaging
    • RPC
    • Thrift
  • computation
    • map-reduce
  • cs-basic-knowledge
    • computer-architecture
    • data-structure-and-algorithms
    • networks
    • os
  • devops
    • Docker
    • Linux
    • Prometheus
    • operations
    • security
    • trouble-shooting
  • distributed-knowledge
    • Zookeeper_CMD
    • distributed-system
  • game-engine
    • Unity
  • others
    • appium使用
  • protocols
    • http(s)协议
    • 官方链接
    • sip
  • storage
    • Elasticsearch
    • GuavaCache
    • MySQL
    • MySQL_CMD
    • NoSQL
    • Redis
    • Redis_CMD
  • system-design
    • system-design
  • tools
    • Git
    • IDEA
    • Mac
    • VScode
    • Vim
  • _working
    • doc-template
      • backend-design-review
      • correction-of-error
      • service-review
    • process
      • domain-backup
      • oncall
  • blogs
    • history
      • 8088/8086微处理器
      • 8088/8086指令系统
      • CSS-DOM
      • CSS定位
      • CSS工作原理
      • CSS控制背景
      • CSS浮动布局
      • CSS盒模型
      • Chrome开发者工具使用方法
      • DOM
      • Django Model模型层学习
      • Django-REST-framework Serializers学习
      • Django-REST-framework Views和ViewSets学习
      • Django View视图层学习
      • Gvim下Emmet安装及使用教程
      • HTTP协议简介
      • HashMap原理初探
      • JavaScript简史
      • JavaScript语法
      • Java内存模型和GC机制
      • Java基础——Lambda学习
      • Java基础——方法引用
      • Java基础——枚举类型
      • Java类加载机制
      • KMP算法
      • Kafka学习
      • Linux下用命令行编译Java程序
      • MathJax简介和基本用法
      • Python实现常见数据结构
      • Python装饰器总结
      • TCP协议的三次握手和四次挥手
      • Thrift学习
      • asyncio学习
      • markdown的常用语法
      • 修改hosts文件实现翻墙
      • 充实文档的内容
      • 关系数据库
      • 关系数据库标准语言SQL(一)
      • 关系数据库标准语言SQL(二)
      • 关系数据理论
      • 关系查询处理和查询优化
      • 内联元素和块级元素
      • 剑指offer算法题练习
      • 动态创建标记
      • 图形化用户界面
      • 在Eclipse中使用Maven构建Java Web项目
      • 增加微博秀遇到的一些问题
      • 处理机调度
      • 如何用github和hexo搭建个人博客
      • 存储管理
      • 存储系统的层次结构
      • 学习模仿lionhit网站首页的过程总结
      • 实用的GitHub小技巧
      • 并发控制
      • 循环与分支程序设计
      • 指令系统的设计
      • 指令级并行及其开发——硬件方法
      • 搭建自己的VPN服务器
      • 操作系统用户界面
      • 数据库安全性
      • 数据库完整性
      • 数据库恢复技术
      • 数据库绪论
      • 数据库编程
      • 数据库设计
      • 数据抽象
      • 文件系统
      • 文法和语言
      • 最佳实践
      • 案例研究:JavaScript图片库
      • 案例研究:图片库改进版
      • 汇编语言程序格式
      • 汇编语言程序设计基础知识
      • 流水线技术
      • 深度优先搜索和广度优先搜索
      • 牛客网——网易2017秋招编程题集合
      • 用JavaScript实现动画效果
      • 第一篇博客
      • 经典排序算法总结(Java实现)
      • 经典查找算法总结(Java实现)
      • 综合示例
      • 编译原理引论
      • 背包、队列和栈
      • 虚拟机安装Linux系统及常用软件
      • 计算机操作系统绪论
      • 计算机系统结构的基础知识
      • 设备管理
      • 设计模式之代理模式
      • 设计模式之单例模式
      • 设计模式之工厂模式
      • 设计模式之策略模式
      • 设计模式之观察者模式
      • 词法分析
      • 进程管理
      • 闭包
      • 阻止Google自动跳转到香港服务器的方法
      • 项目部署过程
  • programming-language
    • C#
      • C#
    • C&C++
      • C
    • C&C++
      • C++
    • Java
      • GoogleGuice
    • Java
      • JVM
    • Java
      • Java
    • Java
      • Maven
    • Java
      • Mybatis
    • Java
      • Spring知识
    • Java
      • SpringBoot
    • Java
      • Tomcat
    • Python
      • Python
    • Shell
      • Shell
  • wheels
    • dcc
      • 产品调研
      • 方案设计
    • red-envelope
      • 方案设计
    • short-url
      • 短链接服务
    • sso
      • 方案设计
Powered by GitBook
On this page
  • Java内存模型
  • Java内存分配机制
  • Java GC机制
  • 垃圾收集器
  1. blogs
  2. history

Java内存模型和GC机制

PreviousJavaScript语法NextJava基础——Lambda学习

Last updated 3 years ago

初步认识Java内存模型和垃圾回收机制。

Java内存分配和回收的机制概括的说,就是:分代分配,分代回收。

Java内存模型

Java内存模型和GC机制1
  1. 程序计数器 每一个Java线程都有一个程序计数器来用于保存程序执行到当前方法的哪一个指令,对于非Native方法,这个区域记录的是正在执行的VM原语的地址,如果正在执行的是Natvie方法,这个区域则为空(undefined)。此内存区域是唯一一个在VM Spec中没有规定任何OutOfMemoryError情况的区域。

  2. Java虚拟机栈 与程序计数器一样,VM栈的生命周期也是与线程相同。VM栈描述的是Java方法调用的内存模型:每个方法被执行的时候,都会同时创建一个栈帧(Stack Frame)用于存储本地变量表、操作栈、动态链接、方法出入口等信息。每一个方法的调用至完成,就意味着一个帧在VM栈中的入栈至出栈的过程。本地变量表存放了编译期可知的各种标量类型(boolean、byte、char、short、int、float、long、double)、对象引用(不是对象本身,仅仅是一个引用指针)、方法返回地址等。在VM Spec中对这个区域规定了2中异常状况:如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常;如果VM栈可以动态扩展(VM Spec中允许固定长度的VM栈),当扩展时无法申请到足够内存则抛出OutOfMemoryError异常。

  3. 本地方法栈 本地方法栈与VM栈所发挥作用是类似的,只不过VM栈为虚拟机运行VM原语服务,而本地方法栈是为虚拟机使用到的Native方法服务。

  4. Java堆 对于绝大多数应用来说,Java堆是虚拟机管理最大的一块内存。Java堆是被所有线程共享的,在虚拟机启动时创建。Java堆的唯一目的就是存放对象实例,绝大部分的对象实例都在这里分配。对于绝大多数应用来说,Java堆是虚拟机管理最大的一块内存。Java堆是被所有线程共享的,在虚拟机启动时创建。Java堆的唯一目的就是存放对象实例,绝大部分的对象实例都在这里分配。Java堆内还有更细致的划分:新生代、老年代,再细致一点的:eden、from survivor、to survivor,甚至更细粒度的本地线程分配缓冲(TLAB)等,无论对Java堆如何划分,目的都是为了更好的回收内存,或者更快的分配内存。如果在堆中无法分配内存,并且堆也无法再扩展时,将会抛出OutOfMemoryError异常。

  5. 方法区 方法区中存放了每个Class的结构信息(包括常量池、字段描述、方法描述等)、final常量、静态变量、编译器即时编译的代码等。相对来说,垃圾收集行为在这个区域是相对比较少发生的。

  6. 运行时常量池(方法区一部分) Class文件中除了有类的版本、字段、方法、接口等描述等信息外,还有一项信息是常量表(constant_pool table),用于存放编译期已可知的常量,这部分内容将在类加载后进入方法区(永久代)存放。但是Java语言并不要求常量一定只有编译期预置入Class的常量表的内容才能进入方法区常量池,运行期间也可将新内容放入常量池(最典型的String.intern()方法)。运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法在申请到内存时会抛出OutOfMemoryError异常。

  7. 直接内存 直接内存并不是JVM管理的内存,可以这样理解,直接内存,就是 JVM以外的机器内存,比如,你有4G的内存,JVM占用了1G,则其余的3G就是直接内存,JDK中有一种基于通道(Channel)和缓冲区 (Buffer)的内存分配方式,将由C语言实现的native函数库分配在直接内存中,用存储在JVM堆中的DirectByteBuffer来引用。 由于直接内存收到本机器内存的限制,所以也可能出现OutOfMemoryError的异常。

Java内存分配机制

这里所说的内存分配,主要指的是在堆上的分配,一般的,对象的内存分配都是在堆上进行。

JVM堆内存划分(按对象将根据存活的时间)

  • 年轻代(Young Generation)

    • Eden区

    • 两个存活区(Survivor 0 和 Survivor 1)

  • 年老代(Old Generation)

  • 永久代(Permanent Generation,也就是方法区)

年轻代内存分配机制(针对年轻代的垃圾回收即 Young GC)

  1. 绝大多数刚创建的对象会被分配在Eden区,其中的大多数对象很快就会消亡。Eden区是连续的内存空间,因此在其上分配内存极快;

  2. 当Eden区满的时候,执行Young GC,将消亡的对象清理掉,并将剩余的对象复制到一个存活区Survivor0(此时,Survivor1是空白的,两个Survivor总有一个是空白的);

  3. 此后,每次Eden区满了,就执行一次Young GC,并将剩余的对象都添加到Survivor0;

  4. 当Survivor0也满的时候,将其中仍然活着的对象直接复制到Survivor1,以后Eden区执行Young GC后,就将剩余的对象添加Survivor1(此时,Survivor0是空白的)。

  5. 当两个存活区切换了几次(HotSpot虚拟机默认15次,用-XX:MaxTenuringThreshold控制,大于该值进入老年代)之后,仍然存活的对象(其实只有一小部分,比如,我们自己定义的对象),将被复制到老年代。

年老代内存分配机制(针对年老代的垃圾回收即 Full GC) 对象如果在年轻代存活了足够长的时间而没有被清理掉(即在几次 Young GC后存活了下来),则会被复制到年老代,年老代的空间一般比年轻代大,能存放更多的对象,在年老代上发生的GC次数也比年轻代少。当年老代内存不足时, 将执行Full GC。  

Java GC机制

GC机制的基本算法是:分代收集。

年轻代 在年轻代中,使用**“停止-复制”算法**进行清理,将新生代内存分为2部分,1部分 Eden区较大,1部分Survivor比较小,并被划分为两个等量的部分。每次进行清理时,将Eden区和一个Survivor中仍然存活的对象拷贝到 另一个Survivor中,然后清理掉Eden和刚才的Survivor。绝大部分的对象都是短命的,甚至存活不到Survivor中。

老年代 老年代存储的对象比年轻代多得多,而且不乏大对象,对老年代进行内存清理时,如果使用停止-复制算法,则相当低效。一般,老年代用的算法是**“标记-整理”算法**,即:标记出仍然存活的对象(存在引用的),将所有存活的对象向一端移动,以保证内存的连续。

方法区(永久代) 永久代的回收有两种:常量池中的常量,无用的类信息,常量的回收很简单,没有引用了就可以被回收。对于无用的类进行回收,必须保证3点:

  1. 类的所有实例都已经被回收

  2. 加载类的ClassLoader已经被回收

  3. 类对象的Class对象没有被引用(即没有通过反射引用该类的地方)

垃圾收集器

  • Serial收集器:新生代收集器,使用停止复制算法,使用一个线程进行GC,其它工作线程暂停。

  • ParNew收集器:新生代收集器,使用停止复制算法,Serial收集器的多线程版,用多个线程进行GC,其它工作线程暂停,关注缩短垃圾收集时间。

  • Parallel Scavenge 收集器:新生代收集器,使用停止复制算法,关注CPU吞吐量,即运行用户代码的时间/总时间,比如:JVM运行100分钟,其中运行用户代码99分钟,垃 圾收集1分钟,则吞吐量是99%,这种收集器能最高效率的利用CPU,适合运行后台运算(关注缩短垃圾收集时间的收集器,如CMS,等待时间很少,所以适 合用户交互,提高用户体验)。

  • Serial Old收集器:老年代收集器,单线程收集器,使用标记整理(整理的方法是Sweep(清理)和Compact(压缩),清理是将废弃的对象干掉,只留幸存 的对象,压缩是将移动对象,将空间填满保证内存分为2块,一块全是对象,一块空闲)算法,使用单线程进行GC,其它工作线程暂停(注意,在老年代中进行标 记整理算法清理,也需要暂停其它线程),在JDK1.5之前,Serial Old收集器与ParallelScavenge搭配使用。

  • Parallel Old收集器:老年代收集器,多线程,多线程机制与Parallel Scavenge差不错,使用标记整理(与Serial Old不同,这里的整理是Summary(汇总)和Compact(压缩),汇总的意思就是将幸存的对象复制到预先准备好的区域,而不是像Sweep(清 理)那样清理废弃的对象)算法,在Parallel Old执行时,仍然需要暂停其它线程。Parallel Old在多核计算中很有用。Parallel Old出现后(JDK 1.6),与Parallel Scavenge配合有很好的效果,充分体现Parallel Scavenge收集器吞吐量优先的效果。

  • CMS(Concurrent Mark Sweep)收集器:老年代收集器,致力于获取最短回收停顿时间,使用标记清除算法,多线程,优点是并发收集(用户线程可以和GC线程同时工作),停顿小。


Java 内存区域和GC机制
JVM 堆内存设置原理